
 
Modeling 3D unsteady sheet cavities using 

a coupled UnRANS-BEM code 
by 

Georges L. Chahine and Chao-Tsung Hsiao 
DYNAFLOW, INC. 

7210 Pindell School Road 
Fulton, MD 20759 

e-mail: info@dynaflow-inc.com 
http://www.dynaflow-inc.com 

 
ABSTRACT 

 
The flow field of a propeller blade subjected to 

sheet and cloud cavitation includes several complex 
and strongly interacting features: flow separation, 
turbulence, presence of vortical structures, deforming 
and moving free surfaces, free surface instability, and 
cavity break-up. To best describe this flow field we 
are developing a numerical scheme combining a 
viscous Navier Stokes code (UnRANS) and a 
potential code (BEM) combining the capabilities of 
each model to address portions of the problem and to 
achieve a description level that is not possible with 
each of the methods alone. The UnRANS code is 
used to describe the turbulent viscous flow around 
the blade, while the BEM code is used to describe the 
non-linear cavity free surface deformations.    

In this paper we apply the developed method 
to study sheet cavitation dynamics on a straight and a 
twisted elliptical hydrofoil.  We show the results 
obtained and discuss issues and future development 
efforts. Cases presented consider the influence of the 
cavitation number, the incidence angle, the 
oscillation of the foil, and the Reynolds number on 
the results.  Also the influence on the cavity 
dynamics of a perturbation in the inflow field, such 
as in a wake is considered. 

  
INTRODUCTION 

 
The periodic shedding from a sheet cavity of a 

bubble cloud and its subsequent convection 
downstream followed by collapse leads to deleterious 
effects such as noise, erosion and vibrations which 
can strongly affect the expected performance of 
marine propellers (Bark & van Berlekom, 1978, Shen 
& Peterson, 1978, Brennen, 1994). Even though, this 
phenomenon have been observed and documented for 
many years, the processes by which cloud cavitation 
inception occurs have not been elucidated. Numerical 
modeling of the phenomenon remains one of the 
frontier problems. The flow involves several complex 

features --- transition zones, turbulence, presence of 
vortical structures; deforming and moving free 
surfaces; free surface instability and break-up; 
detachment and flow of a bubbly medium. The lack 
of fundamental knowledge of the basic physics at 
play in the problem has made simulations using 
conventional assumptions questionable until these 
assumptions have been confronted. 

At this time several numerical methods have 
been developed. The more recent involve non-linear 
three-dimensional modeling of partially cavitation 
(Kinnas et al 1993, 1999, Pellone et al 1998, Dan and 
Kuiper 1999 a,b, Lange, 1996). Other approaches 
such as by Kubota et al. (1989) and Reboud & 
Delannoy (1994) consider a two-phase flow or a level 
set model to describe the periodic cloud shedding. 
Some experimental studies were also conducted to 
understand the mechanism of unsteady attached 
cavitation (Franc & Michel 1988, Tassin Leger et al 
1998 a,b, Katz et al 1999). The dynamics of bubble 
clouds was studied among others by Brennen et al 
(1994), Wang and Brennen (1999), Chahine et al 
(1983,1992). We considered a potential flow and 
computed by a three-dimensional boundary element 
method (BEM), which efficiently and accurately 
describes moving boundary flows (Brebbia et al 
1989, Becker 1992) the bubble dynamics. The 
advantages of the BEM lie in the economy of 
unknowns only sought on the discretized liquid 
domain boundaries, and in its accuracy in handling 
boundary deformation. Moreover the movement of 
the boundary is easily followed in a Lagrangian 
fashion using the local velocity.  

In order to study sheet cavitation instability and 
cloud inception, we couple the BEM and the 
UnRANS to use the best features of each of these 
approaches. More particularly we modified and 
coupled the UnRANS code, UNCLE, developed by 
Mississippi State University (MSU) with 
DYNAFLOW's Boundary Element Method code, 
3DYNAFS. UNCLE is used to accurately describe the 
basic physics of the viscous flow around the propeller 



Figure 1.  Sketch of the coupled UnRANS / BEM 
codes and procedures. 

blade, while 3DYNAFS accurately describes the non-
linear free surface dynamics of the cavities and their 
interaction with the viscous flow.  
 
Overview of the method 
 

As described in the next section our 
approach is justified through the use of the Helmholtz 
decomposition where the flow velocity is 
decomposed into a potential part and a vortical part.  
The potential part is solved using the BEM code, 
which is modified to account for the vortical 
components, both in the time stepping procedure and 
in the boundary conditions. The Helmholtz 
decomposition is carried into the momentum 
equation, which results in a modified Bernoulli 
equation involving the vortical and viscous terms. 
These are obtained from the Navier-Stokes 
computations. The two-way coupling is further 
accomplished with the BEM cavity model providing 
the free surface position and its normal speed to the 
Navier-Stokes solver. 

Solution of the UnRANS problem provides 
the velocity, vorticity, and pressure fields in the 
whole computational domain.  Using a cavitation 
criterion, say pressure lower than a critical pressure, 
regions where cavities should be present are 
delineated. This applies to both the region of the fluid 
in contact with the blade and to the bulk fluid.  A fine 
surface discretization of these cavities / free surfaces 
is then automatically generated for treatment by the 
BEM.  Initially, a Dual Reciprocity Boundary 
Element Method (DRBEM) (Chahine et al 1997) was 
used to solve a Poisson equation resulting from the 
Helmholtz decomposition, and which describes the 
potential component of the flow taking the viscous 
vortical  effects into account.  A method for direct 
evaluation of the /d dtφ  terms needed on the free 

surfaces is however presently preferred.  Using the 
velocities and vorticities computed by the UnRANS 
code, /d dtφ  is obtained using a modified Bernoulli 
equation, and is used to update the values of φ for 
the next time step.  The BEM is then solved; a new 
cavity shape found and the cavities’ grids are 
interpolated back to the UnRANS Eulerian grids to 
enable computation of the following time step. The 
procedure is sketched in Figure 1 and can be 
summarized as follows: 

a. The UnRANS code, using a precise 
discretization of the blade geometry, is used to 
describe the turbulent viscous flow around the blades. 

b. The UnRANS equations are solved with 
adequate boundary conditions: no-slip velocity on 
solid boundaries and stress balance (i.e. zero shear 
and balance of normal stresses) on the cavity 
surfaces. This leads to knowledge of velocity, 
vorticity, and pressure fields in the whole 
computational domain. 

c. In order to account for the vorticity field, a 
Dual Reciprocity BEM is used, which results in a 
Poisson equation in which the right hand side, or 
“source term”, contains the vorticity contribution. 

d. Using the velocity and vorticity field 
computed by the UnRANS code, the “source term” in 
the Poisson Equation is obtained, and is assumed 
invariant for the following half time step. 

e. An expansion of the “source term” field in 
terms of a selected basis function is conducted 
resulting in a transformation of the Poisson equation 
into a Laplace equation, which is then efficiently 
solved using the 3DYNAFS BEM method. 

f. Alternatively, to replace c-e, a Dual-BEM 
method is solved which directly computes 

/d dtφ using the above described source terms 
computed in the UnRANS procedure. 

g. The BEM equations are solved using the 
same surface grid as the UnRANS on the blade 
surfaces and a fine discretization on the surface of the 
cavities. This results in a description of the free 
surface nodes velocities, which enables one to update 
the shape of the cavities for the next time step.  

h. The cavity fine grids are interpolated back to 
the UnRANS grid to enable computation at the 
following time step, and to iterate by going back to 
Step a.  
 
MATHEMATICAL FORMULATION 
 

Let us consider a propeller blade immersed 
in an incompressible liquid of density ρ . Noting the 
vector velocity u, the time t, and the pressure p,  the 
continuity and the momentum equations can be 
written: 
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where t  is the Newtonian stress tensor, and g is a 
body force such as the acceleration due to gravity.  
In the frame of reference of the blade, the flow is 
subject to a no-slip condition on the rigid surface: 

0.=u    (2) 
Under some flow conditions cavitation occurs in the 
liquid, and cavities form over the blade surface and in 
the liquid.  At these free surface, neglecting mass 
transfer across the interfaces, the liquid satisfies a 
kinematic and a dynamic free surface condition. The 
kinematic boundary condition on each surface of 
equation ( , ) 0,iS x t = can be written: 

0,iDS
Dt

=   (3) 

while the dynamics condition expresses the 
continuity of stresses at the free interfaces. If we 
neglect gas motion and viscous forces on the gaseous 
side of the free surface, only the normal components 
of the stresses remains, while the tangential liquid 
stresses are null. In this case the normal stress 
balance equation can be written as:  

( ) ,ip γ⋅ ⋅ = −n t n C   (4) 
where pi is the pressure on the free surface side,  C  
the local surface curvature, andγ is the surface 
tension.  The zero stress tangential components can 
be written as:  

( ) 0.⋅ − ⋅ ⋅ ⋅ =  t n n t n n   (5) 

 
Cavity Model 
 

The precise condition under which a cavity 
forms on a solid boundary is not yet well understood. 
Recently in a careful experiment Mörch and Song 
(1992) have shown that a perfect contact between a 
solid boundary and the liquid cannot exist and that 
nanoscopic air cavities remain at any wetted solid 
surface, thus forming potential cavitation nuclei. We 
will use this to justify the use of the following model 
that postulates inception of a cavity on a solid surface 
when the pressure at the surface drops below some 
critical pressure, pc, comparable to the liquid vapor 
pressure, pv, and accounting for a gas pressure, pgo 

.c v gop p p= +    (6) 
If the pressure at any region is below the pressure pc, 
we make that part of the surface free to move with 
the pressure thereafter following a polytropic gas 
compression law of constant, k. The space volume 
between the initial body surface and the freely 

moving free surface forms the cavity of volume V  
that grows and collapses on the body. 
The pressure at the bubble/cavity surface is given by: 

.
k

o
v gop p p γ = + −  

V C
V

  (7) 

The cavity surface moves with the local fluid u 
subject to the condition that no cavity point can 
penetrate the physical solid surface of the body. 
During collapse a free surface point that approaches 
the solid surface is made a solid node again.  
 
Mixed Approach 
 

In order to be able to study with some 
accuracy the physics involved with the highly 
nonlinear dynamics of the cavities, especially in the 
boundary layer of the blade, a mixed UnRANS/BEM 
Eulerian / Lagrangian approach was selected. This is 
justified by the fact that the accurate description of 
the dynamics of any free surfaces in the flow domain 
will require a high level of discretization which 
cannot be achieved in the full computational space 
using an UnRANS Eulerian grid. The two codes are 
coupled intimately through use of  half pseudo-
timesteps (one for each of the methods), and through 
a grid “overlay” of the results of one method onto the 
other. 
 
UnRANS Approach for the Liquid Behavior 
 

In turbulent flows a wide spectrum of eddy 
sizes with a corresponding spectrum of fluctuation 
frequencies exist. The largest eddies have sizes on the 
same order of magnitude as the flow domain, have 
low frequencies, and are affected by the boundaries 
and the mean flow. The smallest eddies, on the other 
hand, are determined by the viscosity of the fluid and 
have high frequency fluctuations. As the Reynolds 
number of a given flow increases, the width of the 
spectrum, or the difference between the largest and 
smallest eddies increases. 

The large eddies extract kinetic energy from 
the mean motion and feed it to the large scale 
turbulent motion. Energy is passed down the cascade 
to smaller and smaller eddies until viscosity causes 
the dissipation of the eddies. The rate of energy 
dissipated is determined by the large scale motion 
although dissipation occurs at the smallest scales. It is 
important to note that viscosity does not determine 
the amount of dissipated energy, but only the scale at 
which dissipation occurs, and that away from 
boundaries much of the physics of turbulence is 
effectively inviscid. 

Direct numerical simulations (DNS), which 
involve numerically solving the full unsteady NS 



equations and resolving all relevant length and time 
scales are currently limited to only simple flow 
geometries and low Reynolds numbers, as the 
computational resources required to resolve all length 
and time scales of turbulence is prohibitively 
expensive. Alternatively, the Unsteady Reynolds 
Averaged Navier-Stokes (UnRANS) equations, 
obtained from averaging the unsteady NS equations, 
require much less computational resources and have 
been shown to be a successful alternative  (Wilson et 
al 1998; Gorski, 1998), 
 
Reynolds Averaging 
 

UnRANS equations have been shown to be 
successful in addressing propeller and ship flow 
problems, (Gorski, 1998, Wilson et al, 1998, Hsiao 
and Pauley 1999). They express a relationship 
between the mean velocity field and the mean 
pressure field. However, they contain as additional 
unknowns, the averaged products of the fluctuating 
velocity components, or the Reynolds stresses, 't : 

( ) 21
.p

t
ρ υ

ρ
∂ + ∇ ⋅ = − ∇ + ∇ − ∇ ⋅ ∂ 

'u
uu u t  (8) 

In order to solve these equations, additional equations 
relating the Reynolds stresses to the mean velocity 
and pressure field, are necessary (closure model). For 
the propeller problem, we are especially interested in 
a Reynolds stress closure model that exhibits, at least 
to the lowest order, the correct asymptotic behavior 
in the near-wall region, and which yields satisfactory 
overall predictions in that region. Otherwise, the 
pressures at the surface of the propeller will be poorly 
modeled, and the cavitation sheet will be predicted 
incorrectly.  

We used a version of UNCLE developed at 
the Mississippi State University (Taylor 1991, Sheng 
1995) that includes both an algebraic, Baldwin-
Lomax model (Baldwin and Lomax, 1978), where the 
eddy viscosity is set to be proportional to the 
modulus of the local mean-velocity vector, and a κ− ε   
two-equations turbulence model.  Here we used a 
simple two-layer Baldwin-Lomax model successfully 
used by MSU for propulsor, ship, and free surface 
problems. The Reynolds stresses are expressed as a 
function of the average velocity field, with a 
multiplying factor called the eddy viscosity, tm .  

( )
( )

;
;
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t
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  (9) 

where s is the distance normal to the solid surface. 
This eddy viscosities( )t innerm and ( )t outerm are in turn 

written in terms of average flow characteristics 

involving the local vorticity and the law of the wall 
coordinates, y+.  

The UNCLE code is based on the artificial-
compressibility method in which a time derivative of 
the pressure is added to the continuity equation to 
couple it with the momentum equations. As a 
consequence, a hyperbolic system of equations is 
formed and can be solved using a time-marching 
scheme. The method can be marched in pseudo-time 
to reach a steady state solution when a divergence-
free velocity field is obtained. To obtain a time-
accurate solution, a sub-iterative procedure with 
pseudo-time steps is performed at each physical time 
step. 
 
UnRANS Free Surface Conditions 
 

When coupling the Navier-Stokes 
computation with the boundary element code 
3DYNAFS, the Navier-Stokes flow solver must be 
able to handle gas-liquid interface and moving 
boundaries. We have implemented in UNCLE a 
generalized free surface boundary conditions that 
enforce zero shear stress and normal stress balance 
on the bubble surface. For the curvilinear coordinate 
system with orthogonal boundaries, the boundary 
condition can be written as follows:  
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where U,V,W are the contravariant velocities, and 
, ,x h  and V are the curvilinear coordinates with W 

and V in the normal direction of the surface. The 
contravariant metrics ijg and ijg are defined as follows: 

xx
x x

¶ ¶¶ ¶= =¶ ¶ ¶ ¶, .j jij i i
ij

k k k k

xxg gx x    (11) 

 
Grid Generation 
 

To conduct the Navier-Stokes computation 
with moving boundaries, an efficient grid generation 
scheme, which can automatically generate an 
appropriate grid based on new boundaries at each 
time step, must be integrated with the Navier-Stokes 
solver. Here we have implemented a grid generation 
scheme combining both algebraic and elliptic grid 
generation techniques as described in (Hsiao and 



Pauley, 1998) which creates a good quality grid at 
each time step. This uses trans-finite grid 
interpolation on most blocks, combined with an 
elliptic grid generation technique for the block 
including the free surface of the cavity. In this 
approach equations such as:  

2 (, , ), 1,2,3,i ix P ix h VÑ = =    (12) 

are solved subject to given boundary conditions for 
the nodes on the block boundaries; i.e. known node 
locations at the boundary or gridlines perpendicular 
to the boundary. Given a problem, the strategy is to 
take the region on which the problem is posed, and 
map it onto a simple region (a cube) and calculate the 
metric coefficients needed to transform the 
differential equations and boundary conditions 
governing the phenomena to this simpler domain. 
The transformed problem is then solved using a finite 
 

 

Figure 2.  Multi-block gridding used in the modified 
UnRANS code UNCLE for the sheet cavitation  

problem treatment. 

 

difference method on the simple computational 
domain. Any changes to the geometry of the physical 
domain are performed dynamically by changing the 
mapping, and proceeding with the solution of the 
physical problem on the computational domain. We 
also use a multi-block method that allows only some 
blocks to vary discretization with times, while the 
other blocks remain invariant. This is very 
compatible with the UNCLE code, which uses multi-
blocks and a multigrid approach.  A typical multi-
block grid for the problem here is shown in Figure 2. 
A time varying grid configuration (presence and 
absence of cavity) is shown in Figure 3. 
 
Treatment of the Cavity 

 
In order to proceed with the BEM/UnRANS 

mixed approach we use the fact that any fluid 
velocity field u can be expressed via the Helmholtz 
decomposition as the sum of the gradient of a scalar 
potential f  and the curl of a vector potential A: 

, , .p pv vf= + = Ñ = Ñ ´u u u u u A    (13) 

Since the flow is considered incompressible, we have 
  fÑ =2 0.  (14) 

By applying Green's identity one can determine f  at 
any point x in the fluid domain once f and its normal 
derivative are known at the boundary of the domain, 
S, which includes submerged bodies, cavities and 
free surfaces:  

ff f ¢
é ù¢ ¢ ¢×Ñê úW = ê ú¢ ¢ ¢- Ñê úë ûò

S

( ) (, )() ,( ) (, )
G dSG x

x n x xx n x x x  (15) 

Here W  is the solid angle subtended by the fluid at 
the point x, n is the local outward normal at the 
surface, and ¢Ñ is the gradient operator in the primed 
variable. G is the free space Green's function, 

 ¢ = - ¢-
1(, ) .G x x x x   (16) 

Taking the curl of (13) we see that A is directly 
related to the vorticity v  by 
 

 vÑ = -2 .A           (17) 
In our mixed approach the vorticity v  is obtained 
from the UnRANS “half step” computation.  
Then, the momentum equation can be rewritten by 
decomposing u into its components: 

v v
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p
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the following modified Bernoulli equation is obtained: 



Figure 3.  Grids used in the modified UNCLE  code at 
two different steps, prior to and after sheet cavitation. 

 v v n¶Ñ P = - - ´ + Ñ¶
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This is an exact expression of the modified Bernoulli 
equation earlier derived in Chahine (1989, 1993).  
By taking the divergence of (19) we obtain the 
following Poisson equation 

( )v vÑ P = = - × Ñ ´R2 2 .u        (21) 
On the boundary, P satisfies 

v v næ ö¶ ÷ç×Ñ P = - × + ´ - Ñ ÷ç ÷÷çè ø¶
2 .t

un n u u  (22) 

The presence of the term R in the right hand side in 
(21) gives rise to a volume term if we were to apply 
the Green’s identity. Therefore, (21) cannot be solved 
using information only at the boundary and the 
regular BEM. This can be overcome by applying the 
“dual reciprocity” boundary element method 
(Partridge et al 1991) as summarized below (Chahine 
et al. 19987). Once we obtain P , and the pressure p 
on the bubble surface from the dynamic boundary 
condition, (20) provides an expression for f¶ ¶/ t 
needed to update f  at the following time step. 
  
Dual Reciprocity BEM  
 

To update the nodal values of f at the free 
surface at successive time steps we need to solve in 
an efficient way the Poisson equation for P . To do 
so, we expand the right hand side term R as a sum of 
radial functions as follows: 
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This transforms the Poisson Equation into a Laplace 
equation as follows: 
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Now we can use a BEM scheme similar to 
that for f , and obtain the field Y . We now have to 

solve the two Laplace equations, 2 0φ∇ =  and 
2 0∇ Ψ = , with the following boundary conditions: 
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Dual BEM Approach 
 

The computations of the function Y are very 
sensitive numerically to the choice of the radial basis 
functions.  In addition, they require finite 
differencing of quantities close to the body (see 
Figure 5 showing the large values concentrated at the 
boundary and prone to large errors).  These 
procedures, at least as we have implementing them, 
turned out to be not too robust.  We selected to 
replace this scheme with a direct computation of 
/ tf¶ ¶ . If 2 0fÑ = , then we also have: 

( )2 / 0.tφ∇ ∂ ∂ =    (26) 
The Boundary Element Method can thus be applied 
to / tf¶ ¶ with the appropriate boundary conditions; 
i.e. zero normal derivative of  / tf¶ ¶  on the solid 
boundary and in addition we account for the results 
obtained with the UnRANS code.  On the solid 
boundaries we use: 

,unclep p=    (27) 
to determine cavitation criterion, and on the cavity: 
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The use of the pressures obtained by the UnRANS 
code is an important step that insures a perfect match 
between the potential flow and the Navier Stokes 
pressure distributions.   
 
Discretization 
  

The free surfaces are discretized into 
triangular elements, to generate a set of linear 
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Figure 4.  Concentration near the boundary of the term R  in the Poisson equation.  i represent the row numbers 

equations relating f  and f¶ ¶/ n (and Y  and 
¶Y ¶/ n ) at the nodes, 

( ) ( )f fé ù¶ - =ê úê ú¶ë ûå ' ' ' '( , ) ( , ) 0.ij i j j ij i j jj
A x x x B x x xn    (29) 

The functions f  and f¶ ¶/ n (and Y  and ¶Y ¶/ n ) 
are linearly interpolated inside each panel using their 
values at the vertices of the triangle. Aij and Bij are 
geometry dependent matrices relating the influence 
of the jth node at the ith node. They are obtained by 
integrating the surface integral in (15) analytically 
over each panel separately. Since the problem has 
both free surface and solid boundaries, f is known 
on the free surface and f¶ ¶/ n is known on the solid 
boundaries. The equations are then solved for 
f¶ ¶/ n  on the free surface and for f on the solid 

boundaries (Chahine et al, 1988, 89, 94}. (The 
formulation is similar for Y  and ¶Y ¶/ n ). 
  
Time Integration 
  

The time evolution of the flow is governed 
by the boundary conditions. We may update the 
values of the velocity potential f  using : 
f f f fr

¶= + ×Ñ = P - - + ×Ñ¶ 21 ,2
D p
Dt t u u u  (30) 

where the material derivative is computed as the 
surface moves with the fluid. Then, the obtained 

normal and tangential velocities are used to 
determine the motion of the cavities' surface nodes. 
These integrations are performed with an explicit 
Euler scheme. An adaptive time stepping selects a 
time step proportional to the ratio of the smallest 
internodal distance to the largest nodal velocity. 
 
Wake and Tip Vortex Modeling in the BEM 
 

In order to 
properly describe the 
pressure and the lift 
distribution on the foil 
it is necessary with an 
inviscid method, to 
introduce additional 
singularity 
distributions to 
account for real fluid 
effects that are not 
directly recovered by 
the irrotational model.  
This includes, for 
instance a proper 
description of the lift of the blade, and means to 
describe the presence of a wake behind the foil and of 
a tip vortex in the blade tip area.  This is a classical 
problem which is solved effectively by enforcing the 
Kutta condition at  the trailing edge of the foil.  This 
condition insures pressure equality at the trailing 
edge between the suction and the pressure side of the 

Figure 5  Foil and wake 
example discretization for 
the boundary element 
method. 



Figure 7.  Sketch of the line 
vortices added to the blade 

gridding 

Figure 6.   Illustration of the special treatment of 
the junction area between the wake and the foil. 

blade. In order to achieve this we need to add a 
vortex sheet behind the trailing edge of the foil, 
which enables one through proper choice of the 
intensity of the vortex sheet to satisfy the following 
conditions:  

a) Continuity of pressure across the sheet, 
b) Continuity of normal velocities across the 

sheet, 
c) Existence at each node i of a jump, fD i , in 

the velocity potential across the sheet, in order to 
accommodate the presence of shear or tangential 
velocity discontinuity. 
In addition, through application of Bernoulli 
condition along two paths each leading to one side of 
the sheet, we can write that: ( ) ( )fD = - - 221 ,2

i upper lo w er
t t

D
Dt u u  (31) 

where the ut s are the tangential velocities on each 
side of the sheet.  
In order to implement this concept we discretize the 
wake as an additional surface of the domain, (See 
Figure 5), and modify Green’s Identity (15) to 
become: 
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A special treatment is required for the junction line 
between the wake and the trailing edge of the foil.  
Triple points are used along this line, such as 
illustrated in Figure 6 by nodes 1, N, and N+1.  These 

are needed to enable the presence of a velocity 
potential jump between nodes 1 and N, and of a 
dipole distribution at N+1 of intensity, 

11N Nf f f+D = - . The modified BEM procedure is 

then to obtain at each time step: a) on the foil f  
knowing / nf¶ ¶ , and b) on the wake 
upper lo w erf f+ knowing fD .   

The wake / vorticity sheet could be allowed 
to evolve in time, and wrap up helicoidally behind 
the foil tip into a tip vortex.  However, this is CPU 
time consuming and does not address the problem at 
hand here.  In addition, since the actual wake should 
be recovered quite accurately by the UnRANS code, 
the objective here is to have in the BEM half timestep 
a description of the foil surface that is not too much 
different from the 
real fluid one.  
Therefore, we use a 
fixed wake, and 
account for its 
wrapping into a tip 
vortex by adding a 
free to deform vortex 
line composed of a 
succession of linear 
segments, and ending 
with a semi-infinite 
vortex line as 
sketched in Figure 7. 
The velocity induced 
by all of these line vortices of length, idc , at a field 
point, x, is obtained using the Biot-Savart law: 

Figure 8.  Pressure coefficient distribution on 
both sides of the blade computed with the Navier 
Stokes code and with the inviscid code with and 
without the Kutta condition applied. 
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Figure 10.  NACA 16-020 foil used for code 
development.  Straight and twisted versions. 
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Figure 10. 
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The potential due to the line vortices is added to the 
incoming flow velocity potential in order to properly 
compute the velocity and pressure fields. 

With the addition of these two vorticity 
distributions, the BEM method is capable of 
recovering the pressure distribution quite accurately 
everywhere but in areas where separation occurs.  For 
instance Figure 8 shows the pressure distribution at 
mid-span on both sides of the foil discussed below in 
the results section for an angle of attack of 12 
degrees. The figure compares the results of the 
Navier Stokes code with those of the BEM code 
when the Kutta condition is and is not accounted for.  
Near the trailing edge, a separation area exists for this 
high incidence angle, that is captured by the RANS 
code (see Figure 9), but obviously not with the 
simple wake model BEM code.  Again, the objective 
here of using the coupled codes is to compensate for 
the lack of precision in some areas of the BEM, but it 
is advantageous for the numerical simulations to 
minimize the differences between the potential and 
viscous code so that the vortical part is more easily 
computed. 
 

RESULTS AND DISCUSSIONS 
 

To test the developed numerical methods we 
selected to use a 3D elliptical hydrofoil with a NACA 
16-020 cross-section, which was extensively tested 
experimentally in the hydrodynamic tunnel of the 
University of Grenoble (Boulon, 1996).  A rendering 
of the shape of the foil is seen in Figure 10.  Also 
shown in Figure 10 is a twisted version of this foil, 
with the pitch angle was varied along the span as 
shown in Figure 11 to minimize tip vortex cavitation.  
The chord of the foil is equal to 12 cm and its half-
span length is 18 cm.  Figure 12 is a picture taken 
from Boulon and Chahine (1998) and shows the 
development of a sheet cavity on the foil when the  
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Figure 9.  Pressure distribution and velocity contours 
near the trailing edge showing separation in the 
region where the cp coefficient of the BEM did not 
match the RANS computations in Figure 9. 



Figure 12.  Sheet and cloud cavitation on an 
oscillating NACA 16-020 foil.  Pictures taken in 

Grenoble. V=10 m/s, s =1.5, and the incidence 
angle is 11.4° and 12°. 

Figure 14.  Time evolution of the sheet cavity and 
development of a reentrant jet.  NACA 16-020, 

V=12m/s, a = 10° , s = 0.9 

time 

inflow velocity is 10 m/s, the cavitation number is 
1.5, and the incidence angle is 11.4° and 12°. We can 
see under these particular flow conditions the 
attached sheet cavity and the shedding of a part of the 
cavity into a cloud convected downstream into the 
flow where it collapses. One disadvantage, however , 
of this foil shape is the noticeable presence of a tip  
vortex cavity that interacts with the sheet cavity.  
This is in fact more important in the numerical 
modeling that in the experiment, because the 
description of the tip vortex cavity requires  special 
treatment that we have not implemented yet, because 
they are beyond the scope of this study.  Numerical 
results were then obtained using the BEM code 
3DYNAFS alone, the modified UnRANS code UNCLE 
alone and the BEM/UnRANS coupled code that is 
still being developed. 

The mesh of the foil was chosen to be at the 
beginning of the calculation denser close to the 
leading edge, where the cavitation inception takes 
place, and coarser near the trailing edge. A 
regridding scheme was then implemented to 
redistribute the nodes properly once a sheet cavity 
develops and tends with the 3DYNAFS grid moving 

with the liquid velocity to increase the node density 
near the trailing edge of the cavity. This procedure 
and its continuous improvement and adaptation are 
essential for a proper operation of the developed 
code.  In fact while regridding and adding panels 
and nodes, may be relatively easy for a 2D BEM, it 
is more challenging for the 3D code developed here, 
and becomes extremely difficult with the UnRANS 
code using regular grids as is the case for the 
modified version of UNCLE presently used here.  In 
order to be able to pursue the computations shown 
below to a significant length of physical time, we 

Figure 13.  Crosscut of an unacceptable UnRANS 
grid that results when the reentrant jet starts 

developing 



Figure 15.  Snapshot at a given time of the sheet cavity 
along the foil span showing the 3D nature of the 
reentrant jet.  NACA 16-020, V=12m/s, a = 10°,s = 0.9

Foil 
Span 

had to compromise in this respect by imposing a 
“rounding” of the cavity near its trailing edge thus 
preventing the beginning of the formation of the 
reentrant jet.  Otherwise as shown in Figure 13,  the 
gridding scheme fails afterwards and the Navier 
Stokes code cannot continue the computations.  
Figure 13  illustrates the distortion of the grids as the 
reentrant jet begins to initiate. Increasing grid 
density at the expense of significant computation 
time could improve a little the picture, but a 
different gridding scheme, such as an overset grid 
scheme in the reentrant jet region is definitely 
needed to pursue the computations with the 
UnRANS beyond this point.   

Figures 14 and 15 illustrate, using the BEM 
code 3DYNAFS alone, for an incoming flow velocity 
of 12m/s, and an angle of incidence a  of 12°, and a 
cavitation number s of 0.9  the time evolution of the 
cavity along the foil surface.  Figure 15 is a crosscut 
of the foil and cavity surface at 55% of the span of 
the NACA foil.  The line behind the foil is the 
crosscut of the imposed vortex sheet wake. Starting 
from the fully wetted foil shape, the sheet cavity is 
seen to develop over time, form a long wavy 
surface, then a reentrant jet which advances under 
the cavity along the foil surface. At this time the 
code does not pursue computations after the 
reentrant jet hits another part of the cavity and the 
computation domain becomes multi-connected.  
However, we will be able to pursue such 
computation in the future, such as we have done for 

reentrant jet in collapsing bubbles (Zhang et al, 
199*, Chahine et al, 1996).  Figure 15 shows for the 
same flow and foil conditions a snapshot at a given 
time of the sheet cavity shape at various sections 
along the span of the foil.  This figure illustrates the 
3D nature of the reentrant jet which has here a 
funnel filament shape that touches back the top of 
the sheet  at one end close to the tip while it is still 
advancing under the sheet cavity at other locations. 

The volume of the cavity versus time can be 
seen in Figure 17.  This figure also shows the 
influence of the angle of attack of the foil on the 
cavity volume variations with time. As expected the 
volume increases with the incidence angle, with the 
transient portion of the computation being also 
longer for the higher incidence.  One can also 
observe some periodic volume oscillations whose 
relative value is larger for smaller incidence angle.  
This is more obvious when observing animations of 
the 3D results which show larger amplitude wave 
motion for the smaller angle of attack.  Including the 
viscous effects in the computations result in a 
significant reduction of the computed sheet cavity.  
This is illustrated in Figure 17, which shows cavity 
volume versus time using both approaches for an 
incidence angle of 12º, an incoming speed of 12 m/s 
and a cavitation number of 0.9.  The volumes are 
about  50% smaller  when viscous effects are taken 
into account.  Similarly, volume fluctuations are 
damped out, and as seen in Figure 17, the surface of 
the cavity is much smoother when viscous effects 
are included. 
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Figure 16.  Sheet cavity volume versus time at 
different incidence angles obtained with the 
modified UnRANS code 



Time (ms)

V
ol

um
e

(c
m

3 )

0 10 20 30
0

5

10

15

20

25

30

35

Re=105

Re=106

Re=107

σ = 0.9 α=12o

Figure 19.  Influence of the Reynolds number on 
the sheet cavity volume time variations. 
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Figure 18.  Shape of the sheet cavity at a 
given time obtained with the inviscid code 
alone (top) and with the UnRANS code 
(bottom).  The back blue surface is the 
wake. Full volume history is in Figure 18. 

 
  
This smoothing effect of viscosity is stronger 

for lower Reynolds numbers. Figure 19 shows for 
the same foil and for s = 0.9 the volume time 
dependence for three values of the Reynolds 
number, 105, 106, and 107.  We can see from the 
figure that the Reynolds number has some effect on 
the absolute value of the cavity volume, with the 
tendency being as seen in Figure 17, i.e. increase 
volume with increased Reynolds number.  In 
addition the volume fluctuations are seen to also 
increase with the Reynolds number.  The same is 
true concerning the cavity free surface shape which 
become rougher with the increase of the Reynolds 
number.  Let’s restate here that stronger oscillations 
than those shown in the above results actually exist, 
since we have prevented here the development of the 

reentrant jet to be able to pursue the computations 
over a long time period. 

Figure 20 shows the influence of the cavitation 
number on the cavity volume. Three values of s are 
considered 0.9, 1.0 and 1.1. Here too as expected 
lowering the cavitation number results in increased 
cavity volume and increase volume oscillations. 

Figure 21 shows how the lift coefficient 
distribution, cp, along the foil is modified by the 
development of the sheet cavity.  As expected cp is 

Figure 17.  Comparison of the volume versus time 
results of the potential flow solver alone and the 
viscous code results. 
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very much modified on the suction side taking the 
value -s at the location of the cavity. Here, we also 
see that the pressure side pressures are also affected 
along the full length of the foil and drop by more 
than 10% further resulting in loss of lift. 

 
Complex 3D simulations 
 In order to show the capabilities of the 
developed codes to address complex 3D geometries 
and flow conditions, we consider the following 
effects on the sheet dynamics: 

a) Presence of oscillations in the incoming 
flow or in the foil incidence, 

b) Presence of significant twist on the blade 
shape, and 

c) Non-uniform wake-like inflow conditions. 
 
We have already seen in Figure 10 a rendering of the 
shape of the twisted NACA 16-020.  Figure 11 
showed the values of the imposed pitch angle. Figure 
22 compares the resulting pressure coefficient 
distribution over the blade surface between the 
straight and the twisted foils.  With the pitch angle 
being reduced near the tip and the root we have 
aimed at  generating sheet cavitation only over the  
mid-span of the blade. The actual shapes of the 
cavities generated on the twisted and untwisted foils  
can be seen in Figure 23.  The cavitation in the 
twisted case for this configuration appears to be away 
from the root, where the incidence angle is zero.  The 
change in the pressure distribution as the sheet cavity 
develops can be seen in Figure 24.  Finally Figure 25 
shows the difference in the cavity shape and in the 
flow field pressure distribution at a selected time and 
at various span locations over the foil.  
 In order to check if the code is able to 
handle properly incoming oscillations in the flow 
field we considered a uniform velocity at infinity 
oscillating between 6 and 12°.  This resulted as 
expected in strong oscillations of the volume as 
shown in Figure 26.   
 Finally a wake-like non-uniform flow field 

was imposed at the entrance to the computation 
domain.  Figure 28 describes this flow field by 
representing the resulting velocity contours at the 
start of the computations where the foil is fully 
wetted. We purposely selected a wake like sinusoidal 
distribution in the leading edge to minimize or 
eliminate the tip vortex cavitation.  As expected, the 
code operated properly under these conditions and 
the resulting sheet cavity volume was significantly 
smaller (see Figures 28 and 29) than that obtained 
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Figure 22.  Comparison of the pressure distribution on the fully wetted foil under three conditions:  
a) Non-twisted foil in a uniform flow field,  b) Twisted foil in a uniform flow field, and  

c) Non-Twisted foil in a wake-like flow field 



X

Y

-0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

P
0.10
0.06
0.02
-0.02
-0.06
-0.10
-0.14
-0.17
-0.21
-0.25
-0.29
-0.33
-0.37
-0.41
-0.45

Twisted Time = 0ms

X

Y

-0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

P
0.10
0.06
0.02
-0.02
-0.06
-0.10
-0.14
-0.17
-0.21
-0.25
-0.29
-0.33
-0.37
-0.41
-0.45

Twisted Time = 40ms

Figure 24.  Change in the pressure distribution  with 
the development of the sheet cavity. 
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Figure 25.  Cavity shape and pressure distribution in the 
flow field at various span locations and at a selected time. 
Left set is for un-twisted foil and right set is for twisted 

NACA16-020 foil. 
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NACA16-020 foil oscillating between 6 and 10 

degrees with an oscillation period of 40ms. 

with the uniform flow under the same condition, i.e. 
V=12 m/s, a =12°, and s =0.9.   
  
CONCLUSIONS 

 
We have developed a 3D viscous/inviscid 

scheme to describe sheet cavitation on propeller 
blades.  The code uses a BEM and an UnRANS 
procedure to describe the cavity shape and time 

evolution up to the point of formation of a reentrant 
jet which would result in the inception of cloud 
cavitation. Beyond this point further development of 
the codes is needed and is on-going.  This 
development involves mainly definition of adequate 
grid generation procedures. 

From our numerical results it appear that there 
are three schemes for cavity shape oscillations at 
various flow conditions.  These may occur 
simultaneously under some flow conditions: 

a) The oscillation of the cavity extent, i.e 
length, width, and height, 

b) The development of a wavy over the cavity 
surface whose amplitude can be large 
enough to cut the cavity into two parts, and 

c) The formation of a reentrant jet, which 
curls under the cavity and detaches a 
portion of it into a cavity cloud. 

The last two conditions may lead to cloud 
cavitation formation. 
 We have also found that the Reynolds 
number affects the results making the cavity 
appearance more distorted  and its volume larger at 
larger cavitation numbers. 
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